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ABSTRACT: The full, three-dimensional Coriolis force includes the familiar sine-of-latitude terms as well as frequently

dropped cosine-of-latitude terms [nontraditional Coriolis terms (NCT)]. The latter are often ignored because they couple

the zonal and vertical momentum equations that in the large-scale limit of weak vertical velocity are considered insignificant

almost everywhere. Here, we ask whether equatorial mesoscale clouds that fall outside the large-scale limit are affected

by the NCT. A simple scaling indicates that a Lagrangian parcel convecting at 10 m s21 through the depth of the tro-

posphere should be deflected over 2 km to the west. To understand the real impact of NCT, we develop a mathematical

framework that describes an azimuthally symmetric convective circulation with an analytical expression for an incom-

pressible poloidal flow. Because the model incorporates the full three-dimensional flow associated with convection, it

uniquely predicts not only the westward tilt of clouds but also a meridional diffluence of western cloud outflow. To test

these predictions, we perform a set of cloud-resolving simulations whose results show preferential lifting of surface

parcels with positive zonal momentum and zonal asymmetry in convective strength. RCE simulations show changes to

the organization of coherent precipitation regions and a decrease in mean convective intensity of approximately 2 m s21

above the freezing level. An additional pair of dry cloud-resolving simulations designed to mimic the steady-state flow of

the model show maximum perturbations to the upper-level zonal flow of 8 m s21. Together, the numerical and analytic

results suggest the NCT consequentially alter equatorial mesoscale convective circulations and should be considered in

conceptual models.
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1. Introduction
In a typical introductory atmospheric dynamics class, stu-

dents often derive the full form of the Coriolis force—the ap-

parent force introduced by formulating our equations of

motion in a noninertial reference frame (de Coriolis 1835;

Poisson 1838) attached to the rotating Earth. In three dimen-

sions, in a rotating frame of reference, the momentum equa-

tions for an inviscid fluid are

Du

Dt
1
›p

›x
5 2V

0
sin(f)y2 2V

0
cos(f)w , (1)

Dy

Dt
1

›p

›y
522V

0
sin(f)u , (2)

Dw

Dt
1
›p

›z
5 2V

0
cos(f)u 1B . (3)

In (1)–(3), u, y, and w are the vector components of the

wind,V0 is the rotation rate of Earth, f is the latitude, and B is

the reduced gravity. The pressure divided by the mass density

is p; in the theory of incompressible flows, this quantity is re-

ferred to as the pressure, and we will continue with that con-

vention throughout the paper.

To specify the pressure, we require another equation. When

the Mach number of the flow is small–for example, at con-

vective scales in the atmosphere–acoustic waves travel quickly,

and the flow can be described through either the anelastic or

incompressible approximation. We will use the incompressible

approximation in what follows,

›u

›x
1

›y

›y
1

›w

›z
5 0, (4)

although the anelastic constraint would give similar results but

in pressure coordinates.

Equations (1)–(4) describe themotion of an ideal fluid under

the ‘‘full Coriolis force.’’ In an effort to meaningfully simplify

the standard equations of motion, we often use scaling argu-

ments, which suggest that, in typical midlatitude conditions,

the underlined term on the right-hand side (rhs) of (1) is much

smaller than the first, and so can be neglected. We then note

that the underlined termon the rhs of (3) ismuch smaller than the

leading order vertical accelerations, gravity and the pressure

gradient force. These assumptions lead to the so-called tradi-

tional approximation. For standard, synoptic, midlatitude mete-

orology, the traditional approximation does not introduce any

major errors. However, at or near the equator, this approxima-

tion is less accurate owing to the relative largeness of cos(f) to

sin(f), all othermagnitudes being equal. The underlined terms in

(1)–(3) are sometimes called the ‘‘nontraditional Coriolis terms’’

(NCT) being derived from the ‘‘nontraditional approximation.’’

Of course, we are not the first to discuss the form or impact

of the NCT. The NCT are commonly considered in hydro-

dynamic flows of deep-atmosphere planets (Savonije and

Papaloizou 1997; Ogilvie and Lin 2004; Dintrans et al. 1999)

and sometimes on terrestrial ocean dynamics (Denbo and

Skyllingstad 1996; Marshall and Schott 1999). Their effectCorresponding author: Matthew R. Igel, migel@ucdavis.edu
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on the terrestrial atmosphere is less commonly considered al-

though reasonably well understood in some contexts. Hayashi

and Itoh (2012) examined the response to an MJO-like equa-

torial diabatic heating forced by the NCT. Ong and Roundy

(2019) recently examined the response of equatorial synoptic

flows to the NCT in a simplified model and separately argued

for their inclusion when calculating a meaningful geopotential

(Ong and Roundy 2020). Tort and Dubos (2014) developed a

shallow atmosphere model with the complete Coriolis force.

What these papers all have in common, besides a near uni-

versal message not to ignore the NCT, is a limited range of

length and time scales of consideration; below the synoptic

scale in the atmosphere, the NCT have received little system-

atic attention with two notable exceptions. LeMone, in her

famous paper analyzing (tropical) convective momentum

transport observed in a squall line in GATE (LeMone 1983),

concludes that in the case examined ‘‘Earth’s rotation must

be accounted for via [NCT]’’ when considering momentum

transport as its effect is at least second order. Liang and

Chan (2005) examine the effect of NCT on a hurricane and

conclude that it can yield asymmetric precipitation patterns,

perturbations to stormmotion and, as we will, vertical vorticity

derived from vertical flow.

In this paper, we ask a simple question about the NCT:

what are their impact on three-dimensional tropical mesoscale

convective circulations? Part of the motivation for asking this

question is practical. For example, the Weather Research and

Forecasting (WRF) Model documentation (Skamarock et al.

2008, p. 11) states that for a standard Cartesian grid, the ac-

celerations due to the NCT should be set to zero.1 But if the

effect of the NCT on the kinds of cloud-resolving simulations

for whichWRFwas designed is consequential, WRF users may

need to consider the impact of these ignored terms. Cloud

Model 1 (CM1) (Bryan and Fritsch 2002) also assumes the

NCT are zero (as of version 19.2). The Regional Atmospheric

Modeling System (RAMS; Cotton et al. 2003; Saleeby and

Cotton 2008) does not include the NCT. The Nonhydrostatic

Icosahedral Atmospheric Model (NICAM) (Satoh et al. 2010)

does include these terms and a version of the fifth-generation

PSU–NCARMesoscale Model (MM5) (Liang and Chan 2005)

does as well—so their exclusion is not universal among cloud-

resolving models. Furthermore, it has been argued through a

normal mode analysis of the NCT in a compressible, stratified

flow that as grid spacing shrinks in global models, NCT should

be added there as well (Kasahara 2003).

That being said, we are more generally motivated by a sus-

picion that the NCT may play an underappreciated role in

shaping the evolution of equatorial convective circulations and

the resultant morphology of convection. In the preamble to

their review of the impact of the NCT on geophysical flows,

Gerkema et al. (2008) lamented that,‘‘[as] the interest in [NCT]

has waxed and waned repeatedly, the literature is scattered,

and much of it has slipped into oblivion.’’ Therefore, we think

it is plausible that the NCT has been unintentionally ignored at

the atmospheric mesoscales.

To answer our motivating question, we rely on cloud-

resolving modeling and analytic results. These are organized

as follows. In section 2, we examine the equatorial scales of

motion implied by the NCT. In section 3, we develop an ana-

lytic model for the effect of the NCT on closed equatorial

circulations. This analytic model uses an important intuition–

acoustic waves travel much more quickly than convective

flows, so the atmosphere in the vicinity of a convective flow

behaves incompressibly (more accurately, anelastically). Pressure

in incompressible flows, is determined diagnostically through

the Leray projection. Using the Leray projection, we explicitly

describe the force on a model convective flow. The mathe-

matics works out extremely simply and shows one component

of the force (we call it the Coriolis Rotation term) to be pro-

portional to the sine of the longitude, which drives the tradi-

tional cyclonic/anticyclonic motion associated with convection.

The second component of the force is proportional to the co-

sine of the latitude, is strongest in the tropics, and is, therefore,

the primary effect of the NCT. This Coriolis Shear force, as we

call it, is systematically present in any vertical convective cir-

culation, is westward in the ascending part of a convective flow,

and diffluent in western outflow. In section 4, we calculate the

exact NCT and pressure resulting from an analytic expression

for a model poloidal convective circulation, the DoNUT

model. In section 5, we numerically simulate the impact of

the NCT in two cases: one case will show the asymmetric

effect zonal velocity has on convective motions and the other

will show the effect of the NCT on the statistics of clouds

and precipitation. Finally, we test this new analytic model

with a pair of steady-state simulations designed to mimic the

analytic model.

2. Exploratory results

a. Inertial circles
As a suggestive practice, we examine the nature of inertial

circles induced by theNCT at the equator. If one considers an air

parcel of always-neutral buoyancy that instantaneously adjusts

to the local pressure, and neglecting the spatial variations in

velocity, then we can compute the classical inertial circles asso-

ciatedwith theCoriolis force using (1)–(3). The resulting velocity

field is [u(t), y(t), w(t)] 5 V0[cos(2V0t), 2sin(f) sin(2V0t),

cos(f) sin(2V0t)], where V0 is the initial (zonal) speed of the

parcel. The dots in Fig. 1 mark the path of an initially slowly

eastward-moving [u(0)5 1m s21, w(0)5 0m s21] parcel at the

equator (f5 0). Over the course of 12 h, the parcel traces out a

circle and returns to its initial location. The parcel maintains its

initial speed throughout the oscillation. In an idealized sense,

this oscillationmay be imaged as a simple Taylor column aligned

with the rotation axis of the planet, which at the equator is

perpendicular (i.e., into the page) to the local vertical (Gerkema

et al. 2008; Busse 1976).

The diamonds in Fig. 1 show the evolution of a westward

moving [u(0)521m s21, w(0)5 0m s21] parcel initially 1 km

1 The underlined terms on the rhs of (1) and (3) are listed in that

documentation as ‘‘curvature terms’’ instead of ‘‘Coriolis terms.’’

In a broad sense, this is merely a semantic choice by the document’s

authors, but we would argue against this choice given the appear-

ance of V in these terms.
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above the surface. This parcel has the same speed as the first

example parcel but initially travels in the opposite direction. In

this case, the parcel descends until it reaches the surface. At

that time, its vertical momentum is transferred to the surface

(by construction in our simple example), but its zonal mo-

mentum is unaffected. The parcel then skids along the surface

with constant momentum thereafter. Thus the behavior of two

parcels with identical initial properties, except for the sign of

their zonal velocity, is very different when influenced by the

NCT and subject to a rigid surface. These examples are con-

trived and do not include all kinds of real world complexity

inherent in parcel motion. That being said, the point theymake

well is that the NCT have the potential to act asymmetrically

because of the confinement of flow in the vertical plane by a

rigid surface (and semi-impermeable tropopause).

b. Simple scaling
Next, we will test whether the NCT may be nonnegligible at

the mesoscale. Before doing so, we will note that we present a

stricter scaling in section 4a. The discussion herein is motiva-

tional in the sense that it incorporates only parcel thinking,

which is intentionally simplistic, and provides only a sense of

absolute magnitudes, which must be prejudged in the absence

of magnitudes from other forces.

The zonal displacement due to a constant acceleration and

zero initial velocity in the zonal direction over a period Dt is,
of course,

DX5
1

2

Du

Dt
Dt2 . (5)

If an arbitrary parcel ascends with constant vertical wind

speed W0 over a depth of atmosphere H, then

DX52V
0
cos(f)

H2

W
0

. (6)

Equation (6) suggests that a zonal displacement of an as-

cending air parcel depends on the square of the depth of the

ascent and inversely on the velocity.Wewill consider two cases

relevant to the tropical atmosphere. The first is of a convecting,

cloudy parcel. In this case,H5 18 km andW0 5 10m s21. This

implies DX522.4 km. Taken literally, this would suggest that

up to 2.4 km of the lateral deflection of a cloudy parcel is due

purely to Coriolis acceleration. This deflection would mean

that convection is not upright but rather tilted at 7.58 with the

vertical toward the west.

The second case is one of a subsiding, clear air parcel. In this

case, H 5 18 km and W0 5 20.10m s21. This implies DX 5
240 km. Because of the inverse dependence of the displace-

ment on the magnitude of W0, the slowly subsiding parcel is

displaced more than the relatively quickly convecting parcel.

While the lateral displacement of clear air is likely of little

direct meteorological consequence, we point out the fate of a

forced subsiding parcel because later we will couple convective

updrafts to slow compensating subsidence.

The change in speed of a parcel ascending over a depth of

atmosphere is

DU522V
0
cos(f)H . (7)

Equation (7) shows that unlike for the displacement of a

parcel, the final velocity does not depend on vertical velocity

such that ascending and descending parcels gain the same

speed, although they are in opposite directions. The zonal ve-

locity of a parcel that ascends through the depth of the tropical

troposphere is accelerated by 2.6 m s21 toward the west.

Cumulatively, these scales suggest the NCT likely cannot be

ignored when considering convection.

3. Effect of the nontraditional Coriolis terms on a
general poloidal circulation
The simple scaling in section 2b is convenient yet funda-

mentally flawed as it employs simple ‘‘parcel’’ thinking. Real

convection occurs in a continuous fluid, which means air

movement causes pressure perturbations. It is our supposition

that even subtle indirect effects of the NCT on the pressure

field will be consequential to the complicated mesoscale evo-

lution of convection. Not only will it result in behavior different

than the simple scaling indicates in the vertical–zonal plane,

but it will also have the potential to introduce meridional flow

since the pressure is a nonlocal function of the flow velocity.

As far as the authors are aware, there is no simple mathe-

matical framework incorporating the NCT into the kind of

mesoscale convective circulations in which we are interested.

So, we now introduce one.

In this section we describe analytically and explicitly the

effect of the Coriolis force on an axisymmetric poloidal flow

that we envision to be a basic convective circulation. Our first

insight is to consider a generic poloidal circulation and com-

pute the total Coriolis force (FTotal 5 22V 3 u) experienced

by this flow. In general, the total Coriolis force has a net di-

vergence, which, in turn, would force a divergence in the

velocity field.

Our second insight is that as long as the Mach number of

the convective flow is not large, then sound waves adjust the

FIG. 1. Illustration of the evolution of a pair of arbitrary neutral

air parcels under the influence of the nontraditional Coriolis terms.

Marked locations indicate the evolution in space. Colors represent

the evolution in time (h; colors lighten as time increases). Circles

show a parcel with U(0) 5 1m s21. Diamonds show a parcel with

U(0) 5 1m s21.
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pressure in the fluid so that the actual convective circulation is

incompressible (or anelastic, but as was noted above, this differ-

ence is a matter of details of the computation). This adjustment

occurs on the travel time of sound waves, which is very fast com-

pared to the travel time of the flow. In fact, in an incompressible

flow the pressure adjusts instantaneously in order to establish a net

force that is nondivergent. Therefore, to consider an incompress-

ible flowmeans that wemust restrict attention to the nondivergent

component of the force acting on these flows. Thus we define the

net Coriolis force to be the nondivergent part of the total Coriolis

force, and we will make this definition mathematically explicit

below. For nondivergent velocity fields (incompressible flows),

the pressure is determined from the velocity field by inverting

a Laplacian through the well-known Leray projection.

The net nondivergent Coriolis force is the sum of the total

Coriolis force and the pressure gradient required to maintain a

nondivergent force, FNet 5 22V 3 u 2 =p. Instead of pro-

viding an exact solution for the circulation, the Leray projec-

tion shows how, for any prescribed circulation, the strength and

direction of the net Coriolis force depends on the local flow

speed, and how the traditional and nontraditional net Coriolis

forces depend on the latitude of the circulation.

Although we will work on an f plane, which means that we

neglect the variation of the Coriolis force in our convective

scales, we retain the latitudinal dependence of the Coriolis

parameter so that we can describe the different effects of the

net Coriolis force at different latitudes. Our analysis yields two

structurally different net forces, which the Coriolis force in-

duces on a poloidal convective circulation, neither of which has

any component in the vertical direction:

1) A toroidal force that is cyclonic in the axially convergent

region of the circulation and anticyclonic in the axially diver-

gent region of the circulation. Its strength is proportional to the

sine of the latitude, and thereby vanishes at the equator and

is maximal at the poles. This is the effect of the traditional

Coriolis force, which induces a cyclonic/anticyclonic first

baroclinic structure.

2) A force that is in the horizontal plane, having a dipolar,

diffluent structure around the center of convection. It acts

westward in the center of a convective updraft, recirculates

poloidally away from the center, is maximal at the point

of maximum vertical velocity, and varies as the cosine of

latitude. These NCT effects are most pronounced at the

equator, induce westward tilts in convective updrafts, and

force diffluence in western outflow.

Although the derivation of the Coriolis force is straight-

forward, readers who wish to skip the details may proceed to

either sections 5 or 6.

a. The equations for the net Coriolis force
Consider the incompressible Euler equations (in vector form)

in a stratified fluid in the presence of rotation (modeled on

an f plane),

›u

›t
1u � $u1$p1 2V3u5Bk̂ , (8)

$ � u5 0, (9)

where

V5V
0
[cos(f)̂j 1 sin(f)k̂] , (10)

and î, ĵ, and k̂ are the unit vectors in the local eastward,

northward, and upward directions, respectively. The other

symbols are the same as described in the previous sections.

Equations (8) and (9) are the vector form of (1)–(4), and thereby

contain both traditional and nontraditional Coriolis terms. The

anelastic generalization of these equations would replace (9)

with = � [r(z)u] 5 0, where r(z) is a prescribed density profile.

While the details of the computation would change for the an-

elastic case, the principle of the Leray projection would remain.

The Leray projection provides the algorithm for deter-

mining the pressure from a force and circulation, thereby

constructing a net, nondivergent force field required to main-

tain a nondivergent flow u. By taking the divergence of (8)

and substituting the time derivative of (9), the pressure can be

determined by the inversion of the Laplacian:

=2p5= � [Bk̂2 2V3u2u � $u] , (11)

and thereby contains components due to buoyancy, the Coriolis

force, and the fluid inertia, respectively. The boundary condi-

tions for the pressure are determined by the boundary condi-

tions for the flow. On a rigid boundary, the velocity field satisfies

u � n̂5 0, (12)

where n̂ is the unit normal on the boundary. Taking the dot

product of (8) with n̂, evaluating it on a rigid boundary, and

using (12) yield a Neumann boundary condition for the pres-

sure on the boundary:

=p � n̂5 n̂ � [Bk̂2 2V3u2 u � $u] . (13)

This is simply the mathematical expression for the balance of

normal forces on a rigid boundary. Since the flow cannot

penetrate a rigid boundary, the total normal force due to

buoyancy, Coriolis, and fluid inertia must be balanced by the

normal pressure gradient at that boundary.

On a free boundary, the boundary condition is simply conti-

nuity of pressure. In the atmosphere, wewill consider a rigid lower

boundary (which defines z5 0) and decay of pressure as jxj/ ‘.
The question we ask is, when considered at a fixed latitude

and on scales appropriate to convective clouds, what is the net

effect of only the Coriolis force on an idealized, axially sym-

metric, poloidal circulation. We leave to future work the

thorough discussion of the effect of the buoyancy, Bk̂, and

inertia terms, u � $u, although the latter are briefly considered

in section 4a. Therefore, wemust solve for the net Coriolis force

that results after the Leray projection, since in an incom-

pressible flow, the pressure adjusts instantaneously to maintain

the nondivergent constraint. To solve this problem involves

projecting out the portion of the Coriolis force, which contains

divergence. Defining the net Coriolis force as

F522V3u2=p
C
, (14)

where pC, which we call the Coriolis pressure, is determined by

requiring F to be nondivergent:
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= � F5 0 0 =2p
C
522= � [V3u] . (15)

TheNeumann boundary condition on pC results from requiring

that the normal component of the net force F � n̂ equals zero

on z 5 0:
›p

C

›z
522k̂ � (V3u) on z5 0: (16)

Since the velocity field decays to zero far from the origin, the

Coriolis pressure (which results from the inversion of the three-

dimensional Laplacian) limits to a constant far from the origin–and

without loss of generality we can set that constant to zero. Any

environmental pressure gradient is external to the Leray projection.

b. Computing the Coriolis pressure
Now we construct the Coriolis pressure in (x, y) 2R2, z$ 0.

The Coriolis pressure is the portion of the total pressure field

arising from the Coriolis force acting on the velocity field of

concern, in our case a poloidal flow that satisfies (15) and

boundary conditions (16). To simplify the right-hand side of (15)

we use the vector identity$ � [V3 u]5 ($3V) � u2($3 u) �V.

The rotation vector is constant and the vorticity is defined as

the curl of the velocity field v 5 $ 3 u so (15) becomes

=2p
C
5 2V �v . (17)

In the following, we will show that, for axially symmetric

poloidal flows, the Laplacian in (17) is explicitly invertable and

yields an analytic description of the Coriolis pressure in terms

of the Stokes Streamfunction of the poloidal flow.

c. Circularly symmetric poloidal circulation
Since the vorticity field of a circularly symmetric poloidal

circulation is purely toroidal, it behooves us to compute the

basis vectors in cylindrical polar coordinates as a function of

angle in the plane, and express them in terms of the Cartesian

basis. Clearly the vertical direction is the same in both coor-

dinate systems, and we need only express

r̂5 cos(u)̂i1 sin(u)̂j

û52 sin(u)̂i1 cos(u)̂j , (18)

being the axially outward, toroidal unit vectors, respectively.

Focusing on general axisymmetric, poloidal, incompress-

ible circulations, we consider a local cylindrical coordinate

system in which the velocity is written in component form as

u5u
r
(r, z) r̂1u

u
(r, z) û1u

z
(r, z) k̂ . (19)

The poloidal nature of the flow implies uu 5 0, and axi-

symmetry implies ›ur/›u 5 ›uz/›u 5 0. Incompressibility of

the flow in the (r, z) plane yields the nondivergent constraint

for u in that plane:

1

r

›(ru
r
)

›r
1
›u

z

›z
5 0: (20)

Any nondivergent vector field can be expressed as the curl of

a vector potential, so we can express the toroidally symmetric

poloidal flow u as

u5$3 (Cû) , (21)

whereC5C(r, z) û is the (nondivergent) vector potential, in

analogy to the vector potential of magnetostatics. Since we

will only consider poloidal circulations, and thereby toroidal

vector potentials for the remainder of the discussion, here-

after we will refer to the scalar function C as the vector po-

tential (although technically it is the magnitude of the vector

potential). Utilizing C, the components of the poloidal ve-

locity field are

u
r
52

›C

›z
, u

u
5 0, u

z
5

1

r

›(rC)

›r
. (22)

AlthoughC has the dimensions of a streamfunction, the flow is

not tangent to contours of C.

The ‘‘Stokes streamfunction’’ (Stokes 1842) is designed

so that its contours are tangent to the vector field of

the flow. For poloidal flows in cylindrical coordinates, the

Stokes streamfunction c is equal to the distance from the

axis multiplied by the toroidal component of the vector

potential:

c5 rC . (23)

Substituting (23) into (22), we find

u5
1

r

�
2
›c

›z
r̂1

›c

›r
k̂

�
, (24)

the velocity field is everywhere tangent to contours of c but

proportional in magnitude to j=cj/r.
The Coriolis force is computed usingC from (21) or (22) and

the rotation vector from (10):

22V3 u522V
0
[cos(f)̂j1 sin(f)k̂]3

�
2
›C

›z
r̂1

1

r

›(rC)

›r
k̂

�

522V
0
[cos(f) sin(u)r̂1 cos(f) cos(u)û1 sin(f)k̂]3

�
2
›C

›z
r̂1

1

r

›(rC)

›r
k̂

�

522V
0

�
cos(f)

�
2

sin(u)

r

›(rC)

›r
û1 cos(u)

›C

›z
k̂1

cos(u)

r

›(rC)

›r
r̂

�
2 sin(f)

›C

›z
û

�

522V
0

�
cos(f)

�
1

r

›(rC)

›r
î1 cos(u)

›C

›z
k̂

�
2 sin(f)

›C

›z
û

�

522V
0
fcos(f)[u

z
î2 cos(u)u

r
k̂]1 sin(f)u

r
ûg . (25)
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In the last two lines of (25) we have used a cylindrical basis

vector for the traditional Coriolis force [proportional to sin(f)]

and a Cartesian basis for the nontraditional Coriolis force

[proportional to cos(f)].

The last line of (25) clarifies how the Coriolis force depends

on the vertical and radial components of the poloidal circula-

tion. For the axisymmetric circulations on which we are fo-

cusing, the traditional Coriolis force is nondivergent and acts to

rotate the flow about its center. It might produce, say, vortical

convection or a hurricane.

As one would expect, the nontraditional force acts in the

zonal and vertical directions. The x component of the velocity

field is simply ux 5 cos(u)ur so that the NCT can be written

[uẑi2 cos(u)urk̂]5 uz î2uxk̂. Of course, the right-hand side of

this expression is the simplest form if one wishes to focus on the

total Coriolis force; however, it does not emphasize the rota-

tional symmetry of the poloidal circulation and thereby is not

useful for computing the net Coriolis force that arises when the

pressure is computed. As we pointed out in (17), the divergence

of this vector field is equal to the negative of the ĵ component

of the vorticity of the poloidal circulation. Therefore, a per-

turbation pressure gradient will develop to compensate for the

divergence of the nontraditional Coriolis force.

The k̂ component of the total Coriolis force is needed to

determine the boundary condition on the Coriolis pressure.

Using (25) in (16) we find

›p
C

›z
522V

0
cos(f) cos(u)

›C

›z
on z5 0: (26)

The vorticity of an axisymmetric poloidal flow is purely in

the toroidal direction:

v5

�
›u

r

›z
2

›u
z

›r

�
û , (27)

which, when expressed in terms of the vector potentialC becomes

v52

�
›

›r

�
1

r

›(rC)

›r

�
1

›2C

›z2

�
û

52

�
›

›r

�
›C

›r
1
C

r

�
1
›2C

›z2

�
û

52

�
›2C

›r2
1

1

r

›C

›r
2

C

r2
1
›2C

›z2

�
û . (28)

The reader may note that v 5 2=2C, the vector Laplacian of

the vector potential; we could use this identity to solve for the

Coriolis pressure, but we take the more brute-force approach

for the sake of clarity.

Taking the dot product of the toroidal vorticity, (28), with

the equation for the rotation vector, (10), yields a simple ex-

pression for the rhs of (17) for the Coriolis pressure in terms of

the vector potential:

=2p
C
5 2V �v

0=2p
C
522V

0
cos(f) cos(u)

�
›2C

›r2
1
1

r

›C

›r
2
C

r2
1

›2C

›z2

�
.

(29)

d. Solving for the Coriolis pressure
We are left to solve (29) with the z 5 0 boundary condition

given in (26). In cylindrical coordinates, the Laplacian of the

Coriolis pressure is expressed as

=2p
C
5
›2p

C

›r2
1

1

r

›p
C

›r
1

1

r2
›2p

C

›u2
1

›2p
C

›z2
. (30)

The absolutely elegant fact is that the solution of (29) is extremely

simple. To solve for pC, we introduce the function P(r, z) and

substitute

p
C
(r, u, z)5P(r, z) cos(u) (31)

into (29) using the identity from (30) to arrive at

�
›2P

›r2
1

1

r

›P

›r
2

P

r2
1
›2P

›z2

�
cos(u)

522V
0
cos(f) cos(u)

�
›2C

›r2
1
1

r

›C

›r
2
C

r2
1

›2C

›z2

�
. (32)

In general, we would have to invert the linear operator on the

left hand side of this expression to solve for P–but the sim-

plicity of this equation allows us to read off the solutionwithout

any more work. Notice that the dependence on u and the dif-

ferential operator is the same on the right and left hand sides of

(32). Therefore,P is proportional toC plus a yet undetermined

function R. So we have found P(r, z)522V0 cos(f)[C(r, z)1
R(r, z)], where R is a homogeneous solution of the differential

operator in (32). The resulting Coriolis pressure is expressed

explicitly in terms of C and R as

p
C
(r, z, u)522V

0
cos(f)[C(r, z)1R(r, z)] cos(u) . (33)

Upon taking the z derivative of pC in (33) and substituting

the derivative into the boundary condition (26) we arrive at the

boundary condition for R:

›R

›z
5 0 on z5 0: (34)

We conclude that, since R is a solution to a homogeneous el-

liptic partial differential equationwith homogeneous boundary

conditions, R(r, z)5 0 everywhere. Thus the Coriolis pressure,

pC, is given by the expression in (33) with R 5 0.

e. Solving for the net Coriolis force
The negative gradient of the Coriolis pressure, (33), is

2$p
C
5 2V

0
cos(f)

�
›C

›r
cos(u)r̂2

C sin(u)

r
û1

›C

›z
cos(u) k̂

�
.

(35)

To this expression we add the Coriolis force in (25) to arrive at

the net Coriolis force from (14) expressed in terms of the vector

potential C:

F
net

5 2V
0

�
2cos(f)

�
C

r
cos(u)r̂2

›C

›r
sin(u)û

�

1 sin(f)

�
›C

›z
û

��
. (36)
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Notice that vertical component of the net force vanishes

everywhere in r, u for z . 0, not just at the lower boundary.

This result was not obvious before we embarked upon the

calculation, since the Coriolis force does have a vertical

component throughout the fluid [notice the k̂ component of

the force in (25)]. Nonetheless, we have shown that the com-

ponent of the Coriolis force associated with the eastward

component of the velocity balances the vertical gradient of the

Coriolis pressure [refer to (3)], at least away from the poles

where cos(f) 5 0.

The remarkably straightforward result in (36) can actually

be further simplified. Using the polar coordinate representa-

tion of the curl, we can write the first term in the outermost

parentheses as

2

�
C

r
cos(u)r̂2

›C

›r
sin(u)û

�
5$3 (2C(r, z) sin(u)k̂)

5$3 (2G(x, y, z)k̂)

52
›G

›y
î1

›G

›x
ĵ

[=?G , (37)

where

G5C sin(u) , (38)

and=? is the perpendicular gradient, which is equivalent to the

tangential derivative; =?G is a vector field directed clockwise

around maxima of G.

Substituting this result into the expression for the net force,

(36), we arrive at the main result of our analysis:

F
net

5 2V
0

�
cos(f)=?[C sin(u)]1 sin(f)

›C

›z
û

�
. (39)

We interpret (39) next.

1) INTERPRETATION OF THE sin(f) TERM;
CORIOLIS ROTATION

The second term in (39) is proportional to the sine of

latitude; it vanishes at the equator, is antisymmetric about

the equator, and is maximal at the poles. This term is due to

the traditional Coriolis force and acts solely in the toroidal

direction.

Since the force is proportional to

F
net,2 }

›C

›z
}2u

r
, (40)

we note that it is proportional to the negative of the radial

velocity. This expression tells us that at elevations of maximal

radial inflow, there is a maximal force in the cyclonic direction,

whereas at elevations of maximal radial outflow, there is a

maximal anticyclonic force. This force would tend to spin a

convective cell cyclonically near the base of the troposphere

and anticyclonically near the tropopause.

We name this the Coriolis rotation term. It will likely feel

familiar to readers.

2) INTERPRETATION OF THE cos(f) TERM;
CORIOLIS SHEAR

The first term in outer parenthesis in (39) is more subtle,

more interesting, and in our opinion, not adequately discussed

in the literature. It is symmetric about the equator, so there is

no hemispheric difference in its effects. It is also maximum at

the equator and vanishes at the poles.

Since it depends on the (x, y) perpendicular gradient of the

function G 5 C sin(u), contours of G are related to the non-

divergent, net Coriolis force in the same way that a stream-

function in two dimensions is related to an incompressible

velocity field. That is to say the force is tangent to contours of

G, and where G changes most sharply, the force is strongest.

We reiterate that, from the definition of the perpendicular

gradient in (37), it is clear that the force vectors swirl coun-

terclockwise around low values of G. Importantly, this sense

of circulation of the force vectors is independent of latitude,

unlike the Coriolis rotation term, whose sign changes across

the equator.

We name this component of the force the ‘‘Coriolis shear’’

term andG [from (38)] the ‘‘shear potential.’’ We will provide

some physical insight into these next.

4. The net Coriolis force associated with the ‘‘DoNUT’’
model of convective circulation
An elucidatingmodel fo a poloidal circulation is what we call

the ‘‘DoNUT’’ Model (the ‘‘Dynamics of Nonrotating Updraft

Torii’’). This is a model we will introduce here and describe

more completely in future work. Briefly, we imagine air flowing

upward in an updraft near the ‘‘hole’’ of the DoNUT, air

subsiding along the outer edge of the DoNUT, and a smoothly

varying flow inside. For now, the simplest DoNUT is described

by a vector potential that is separable in r and z (in z$ 0), and

independent of u. An example of such a flow contains two

length scales, L and H, and a strength, w*:

C(r, z)5
w*
2

rz

H
e12z/H22r/L . (41)

To understand the physical meaning of these parameters, we

compute the vertical velocity:

u
z
5

1

r

›(rC)

›r

5w*
z

H

h
12

r

L

i
e12z/H22r/L , (42)

and radial velocity:

u
r
52

›C

›z

52
w*
2

r

H

h
12

z

H

i
e12z/H22r/L . (43)

Therefore, the flow described by (41) consists of a radially inward

velocity below z 5 H, and a radially outward velocity above

z 5 H. The maximum magnitude of the radial velocity occurs

at z5 0 in the DoNUT, and the magnitude decreases as r/ ‘.
The vertical velocity is positive for r,L and negative for r.L.

The vertical velocity is maximum on the axis of symmetry,
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increases from the ground (z 5 0), reaches a maximum of

uz,max 5w* at height z 5 H, and decreases to zero as z / ‘.
In Fig. 2, we plot a radial/vertical cross section of theDoNUT’s

Stokes Streamfunction, c 5 rC, in coordinates (r/L, z/H). By

scaling (L, H, w*) a whole family of different flows can be

described by (41). The flow shown is clockwise with its stag-

nation point at (r/L 5 1, z/H 5 1).

Of the two net forces we have described, Coriolis rotation

and Coriolis shear, the second is the less intuitive and is the one

that needs more description. Computing the shear potential,

(38), associated with the DoNUT, (41), we find

G(x, y, z)5
w*
2

yz

H
e
12z/H2 2

ffiffiffiffiffiffiffiffiffi
x21y2

p	 

=L . (44)

We have expressed G in Cartesian coordinates since the tan-

gential gradient, =?, is most easily described in Cartesian

variables. The Coriolis Shear force is purely in the (x, y) plane

and is derived from the (x, y) derivatives of the Shear Potential.

Therefore, the z-dependent terms in the Shear Potential act

together as a scale factor for the strength of the force at each

height. The vertical velocity on the axis of symmetry (r 5 0) is

also the maximum velocity at each height:

w(z)[w*
z

H
e12z/H , (45)

which, itself, attains the maximum w* at z 5 H. This identifi-

cation allows us to write (44) as

G5w(z)
y

2
e
2 2

ffiffiffiffiffiffiffiffiffi
x21y2

p	 

=L . (46)

From this expression, we learn that the maximum Coriolis

shear occurs at the height of the maximum vertical velocity.

In a separable streamfunction, the strength of the Coriolis

shear at any height is proportional to the strength of the ver-

tical velocity along the axis of symmetry at that height–this is

the updraft velocity.

Along the axis of symmetry of the flow, the net Coriolis

shear force, which is the term proportional to cos(f) in (39), is

F
CS
(0, z)522V

0
cos(f)

›G

›y
î52V

0
cos(f)w(z) î: (47)

Since the central vertical velocity is upward, the Coriolis shear

force along the axis is westward and proportional in strength to

the vertical velocity along the axis. Therefore, the Coriolis

shear force imparts a westward tilt to convective towers and is

most pronounced near the equator.

Figure 3 shows contours of G and vectors of the Coriolis

shear for the DoNUT circulation at a fixed height in the tro-

posphere. Motion is upward at the origin. The westward force

at the convective core and along the latitude of the convective

core is clearly visible. The lines of force also circulate as a di-

pole centered along the axis of symmetry. This circulating force

can impart spreading throughout the convective column but is

most strongly felt at the height of maximum vertical velocity.

Figure 3 also shows the Coriolis pressure field. This is included

to show that the meridional difluence of the net force is due to

the perturbation high pressure on the down shear (i.e., west-

ern) side of the updraft.

The Coriolis shear might be visualized as a mesoscale

manifestation of the synoptic tilting of meridional planetary

vorticity described by Hayashi and Itoh Hayashi and Itoh

(2012). In addition to tilting, the DoNUT flow is also asso-

ciated with significant vertical gradients. Therefore, the

Coriolis shear force also involves stretching of meridional

planetary vorticity. Off the equator, the Coriolis rotation

force is associated with vertical stretching of vertical plan-

etary vorticity.

Comparing the strength of the NCT force to the inertial

force due to advection
Since the time scales of rotation are much slower than those

of convection, one may be left wondering how the intensity of

NCT compares to that of the inertial terms in flows associated

with convection, such as the DoNUT flow. Indeed, intuition

and simple scaling arguments suggest the inertial terms are

FIG. 2. Contours of the Stokes streamfunction vs (r/L, z/H) for the

DoNUT model of (41).

FIG. 3. The shear potential [G, solid contours, from (46)] and net

Coriolis shear force vectors as a function of (x, y), divided by w(z),

the maximum vertical velocity at any given height. The axis scale is

(x/R, y/R) and the contour levels are in units of R. The dashed

contours show the Coriolis pressure field.
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often much larger than the NCT. Consider the Rossby

number for a circulation of aspect ratio approximately one,

where horizontal and vertical length and velocity scales are

approximately the same. Using a typical velocity of U ’
10m s21, length scales of about L ’ 5 km in the vertical

direction, and a Coriolis parameter associated with the

NCT at the equator of f 5 2V0 5 1.5 3 1024 s21, the Rossby

number is

Ro5
U

Lf
’ 13 (48)

meaning that, although the NCT force is smaller than the in-

ertial force associated with the nonlinear advection term, NCT

is not negligible compared to the inertial force.

Scaling arguments of this kind are meant to give a sense of

the relative scales of different terms in the Euler equations,

but they should not be over interpreted. At the equator, the

Rossby number associated with the traditional Coriolis terms

is infinite, and, therefore, it can be rigorously neglected.

However, even if we have underestimated the NCT Rossby

number by a factor of ten, the estimate still suggests that the

NCT cannot be completely neglected.

To completely assess the relevance of the NCT, the impor-

tant questions to ask are, first, how and where does the inertial

force act on a convective circulation compared to the NCT

force, and second, is there a systematic effect of the NCT,

which is ubiquitous for convective flows in general? We have

addressed this second question in section 4.

The vorticity associated with an axisymmetric poloidal

circulation is purely toroidal–like smoke rings in the air. The

nonlinear self-advection of this toroidal vorticity field by

its own poloidal velocity field results in a rearrangement

of the toroidal vorticity, but the vorticity remains toroidal

and the resulting flow remains poloidal. Think of a smoke

ring in the air, which is simply advected by its poloidal flow,

but retains its shape. The details of the self-advection of a

convective poloidal flow are different than a smoke ring

since the convective flow exists in a stratified fluid with a

rigid lower boundary. However, the basic fact remains, the

nonlinear self-advection of a convective DoNUT rearranges

the toroidal vorticity in a way that the vorticity remains to-

roidal and the velocity remains poloidal.

The axis of symmetry, where the vertical velocity is the

largest, is also the axis where the vorticity is zero at all levels.

Therefore it is the location within the DoNUT where the flow

is least influenced by the inertial force, but most influenced by

the NCT.

The effect of the NCT was also demonstrated by Eisenga

et al. (1998) in elegant, laboratory and numerical experiments

on vortex rings (similar to the DoNUT) in a fluid rotating

along an axis perpendicular to the motion of the vortex ring.

In Fig. 5 of their paper, Eisenga et al. (1998) show that, in-

stead of traveling along the axis of symmetry, a vortex ring

with a large Rossby number (523) tilts in the opposite sense

of the rotation of the fluid, tending to maintain its absolute

orientation in an inertial frame of reference. These experi-

ments are the unstratified, dynamical realization of what our

analysis demonstrates kinematically—that even for large

Rossby numbers, a vortex DoNUT will tilt the opposite di-

rection of the rotation of the domain. In the atmosphere, the

tilt will be westward.

5. Cloud-resolving simulations
Next, we add the NCT to the RAMS model (Cotton et al.

2003), which we run in a series of cloud-resolving configura-

tions. These numerical simulations are intended to further our

understanding of the effects of the NCT on convective clouds

and to test our DoNUT model.

a. Isolated congestus simulations
We will begin with two sets of simulations run on a three-

dimensional isotropic grid of 150-m spacing on a domain of

45 km on a side and 21 km tall. The simulations are initialized

with a mean sounding from the DYNAMO field campaign

(Ciesielski et al. 2014) with a 4% moistener boundary layer

(surface to 900 hPa) to help sustain moist convection. We use

the RAMS double-moment (Igel et al. 2015), bin-emulating

microphysics (Saleeby and Cotton 2004; Saleeby and van den

Heever 2013), cyclic lateral boundaries, 20 damping layers at

model top, Mellor and Yamada Mellor and Yamada (1982)

turbulence, and no radiation.

We ran six simulations. Three were run on an equatorial f

plane with NCT included (NCTon) and three were run with the

standard RAMS equation set (NCToff). The three simulations

differed in their intensity of forced convergence in the lower

atmosphere (0–3.5 km) that was included in themodel to excite

convection. The intensities of convergence at the surface were:

4.03 1024, 2.53 1024, and 1.53 1024 s21. We also tried 0.53
1024 s21, but it failed to excite sustained convection. The

convergence intensity decreases linearly with height. We will

focus on the onset of convection.

To make use of this miniensemble of large-eddy simulation

(LES), we will show the ensemble, time-integrated mean of

physical quantities for 20min of simulation. All three simu-

lations within a set are averaged together to best ensure re-

sults are general and not just the result of numerical noise.

Figures 4a and 4b show the ensemble-mean zonal and vertical

winds. These figures show the wind is convergent at the sur-

face and convective from just above the surface to at least

4 km. Figures 4c and 4d show differences of these quantities

between the two simulations (taken as NCTon minus NCToff).

These difference plots show two results that are not neces-

sarily obvious from examining (1) and (3). First, zonal wind

differences are predominantly negative at the surface and

positive in the core of the updraft. Second, there is a coherent,

though somewhat noisy, velocity couplet in the vertical wind

difference.

We take these noted differences to be simulated examples of

the symmetry breaking discussed in section 2a. The negative

zonal velocity difference at the surface may be the result of

preferential lifting of parcels with positive zonal velocities and

preferential sinking (in this case, to the ground) of parcels with

negative zonal momentum. The positive zonal momentum

near 2 km results from the preferential lifting of westerly sur-

face air. Figure 4d illustrates the impact of (3); air with positive

zonal momentum has higher vertical velocity up to about 3-km
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height. The maximum magnitude of the velocity differences is

approximately 1% of the magnitude of the composite velocities.

While the effect of the NCT on short-lived convection appears

to be weak, we want to stress that it is systematic although, of

course, this theory is developed with simple parcel thinking.

The positive/negative vertical velocity couplet around x5 0

in Fig. 4d comes about because the core of the vertical wind has

been forced to the west at altitudes of maximum zonal wind in

the NCTon experiments. The vertical velocity difference basically

integrates horizontally to zero at every vertical level. Such a func-

tion describes a westward shift in the vertical velocity between the

NCToff and NCTon experiments. Furthermore the vertical velocity

difference is maximally positive (or negative) at 1.5-km height,

where the vertical wind is maximal. Both the westward shift in

the location of the core of the vertical velocity, and the fact that

shift is itself maximal at heights of maximum vertical velocity,

are predicted by our calculation of the net NCT in (47).

b. Radiative convective equilibrium simulations

We also ran two sets of radiative convective equilibrium

(RCE) simulations. New simulations were run starting after

day 60 of the RCE simulations from Igel and Igel (2018)

without hydrometeor friction. The original simulation was

initialized with random perturbations to the temperature and

moisture fields and was then run over a fixed surface tem-

perature ocean at 301K with diurnally varying shortwave.

Here, we added an additional 10 days of simulation. RAMS

was run with a 200-km square, doubly periodic domain with

1-km spacing and 65 vertical levels with stretched spacing (see

Fig. 5). At the time of the restart, all the RAMS thermody-

namic variables, including hydrometeor species, were used to

initialize the new run but the dynamic fields were universally

set to zero.We reset the dynamic fields to eliminate the imprint

of any mean flow that may have developed in the 60-day run. It

did not take long for the simulation to spin up new kinetic

energy similar to the behavior seen in Colin et al. (2019). We

ran two simulations, RCEon andRCEoff, where ‘‘on’’ and ‘‘off’’

refer to the NCT. We show results averaged over the final

5 days of these simulations.

Figure 5a shows the average convective vertical velocity

conditioned on a minimum of 1m s21. Unlike in the LES, the

RCE statistics indicate weaker convective strength throughout

FIG. 4. Vertical cross sections of velocity (inNCTon) and velocity differences (as NCTonminusNCToff). (a) Zonal

velocity through the convergence center in NCTon. (b) Vertical velocity in NCTon. (c) Zonal velocity enhancement

in NCTon. (d) Vertical velocity enhancement in NCTon.
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the depth of the convecting layer. The magnitude of the

difference is surprisingly large especially given the result

above that the Coriolis Shear has no vertical component. It

averages approximately 2 m s21 above the freezing level (at

5 km). The structural difference in the velocity profile is the

height of the maximum. In RCEon, the maximum vertical

velocity occurs at around 6 km; in RCEoff, there is a local

maximum near the same altitude but the global maximum

occurs much higher at around 11 km. Solid dots are included

in Fig. 5a to indicate levels at which vertical velocity distri-

butions in RCEon and RCEoff are statistically different as

determined by a two-sided t test at the 99% level. Convective

vertical wind distributions are distinguishable at every level

below 15 km.

In Fig. 5b, we show the profile of mean zonal velocity in

convecting grid boxes. We see a clear preference for convec-

tion to occur in locations with positive zonal velocity. The

figure also indicates that convection occurs in more highly

sheared environments in RCEon (at least statistically), which,

all else being equal, would tend to weaken convective intensity.

To fully explain the differences in shear, we would need to

track and analyze the convective and subsident momentum

transport throughout the simulations. This could be a useful

exercise in future work.

Next, we contrast the nature of precipitation in RCEon with

RCEoff. We do this by constructing composite surface precip-

itation intensity maps from the instantaneous output from

RAMS. Maps are constructed so that the maximum precipi-

tation value occurring within a contiguous region of precipi-

tation intensity greater than or equal to 1mmh21 occurs in its

middle. All precipitation values outside this region are zeroed.

Because of the doubly periodic nature of the RCE simulations,

maps are padded out on all sides and then pared back to the

size of the simulation grid (200 km 3 200 km) centered on the

precipitation maximum.

Figure 6 shows the azimuthally averaged, event-mean

structure of precipitation intensity. In RCEoff, maximummean

precipitation falls at approximately 15mmh21 while in RCEon,

the maximum intensity is only 12mmh21. This could simply

be a consequence of the decrease in maximum updraft speeds

(Fig. 5). Or, it could be due to a change in the structure of

clouds. Figure 6 shows that while the peak intensity of com-

posite precipitation in RCEon is lower, rain rates are actually

higher beyond 10 km from the composite center. The right

axis of Fig. 6 helps to show the importance of this difference.

It indicates the azimuthal accumulation of rainfall (essen-

tially just a distance weighting to the mean). The peak ac-

cumulation occurs 5 km from the composite storm centers

and is 25% higher in RCEoff. But beyond 12 km, RCEon

storms have as much as 300% more accumulation (due to

small accumulation in RCEoff). That is, precipitation features

are much wider in RCEon. An approximate visual integration

of the red curves indicates the total precipitation accumula-

tion in the composite storm in RCEoff and RCEon are nearly

FIG. 5. Profiles of mean (a) convective (i.e., .1m s21) vertical velocity and (b) zonal

velocity in convection in RCEon and RCEoff. Filled circles indicate model levels where

the statistical distributions of convective respective velocities are distinguishable from one

another by a two-sided t test at the 99% level.
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the same (the difference is, indeed, within 1%). The implied

lateral spreading of precipitation is consistent with an in-

crease in the shear of convective environments.

c. Simulating the DoNUT
Finally, we are left wondering whether we can recreate

the DoNUT with more RAMS simulations. The DoNUT

model is steady state. To reflect this, we ran a set of RAMS

simulations with a surface enthalpy flux that varies in space

only but with an otherwise identical setup to the RAMS

LES. The flux occurs over a double-Gaussian patch in the

center of the domain with a full width at half maximum of

10 km. Themaximumflux is 500Wm22.Microphysics is turned

off for simplicity. The two simulations are DONUToff and

DONUTon. They are run for 3 h to approximate the time scale

of sustained convection. An ascending plume sets up over

the enthalpy flux patch while the rest of the domain is

characterized by far-field descent. The flow characteristics

of the convective circulation in DONUTon can be seen in

Figs. 7a and 7c. The flows shown have been averaged hori-

zontally (in Figs. 7a,b) over the middle 5 km and vertically

(in Figs. 7c,d) between 3.8- and 5.6-km height (i.e., just

above the level of maximum vertical wind speed) and over

the final 30 min of the simulations.

Figures 7b and 7d show the differences in the flow in the

vertical and horizontal planes (DONUTon minus DONUToff).

Figure 7b illustrates the induced cyclonic rotation (viewed

from the south) in the vertical plane. While we cannot cal-

culate the force from the model in a way that would be

identical to the DoNUT model, we can instead show the

resulting flow which proves to be remarkably consistent

with that implied by the force in Fig. 3. RAMS simulates

westward acceleration (as it does in NCTon and RCEon)

and the meridional confluence and difluence pattern pre-

dicted by the DoNUT model. This pattern is reflective of

what is shown at the synoptic scale for a simulated hurri-

cane in Liang and Chan (2005) (their Fig. 7), although here

with a much more prominent closed circulation due to the

single updraft maximum. But the cause and effect are the

same: a central region of uplift forces anticyclonic vortic-

ity to the north and cyclonic vorticity to the south through

the NCT.

6. Summary
In some sense, the question we have asked has an obvious

answer: might equatorial deep convective clouds feel an effect

from the Nontraditional Coriolis Terms (NCT)? Intuition may

suggest that the answer is ‘‘no’’ given subdaily time scales of

convection. Perhaps surprisingly, then, we have shown that

the answer is more likely ‘‘yes.’’ Taken as a whole, why do we

suggest this?

We discussed a simple, Lagrangian scaling argument that

depends on the relatively weak 10m s21 updrafts in tropical

convection and relatively deep convective layer of 18 km re-

sults in a 2.4-km zonal displacement of an isolated ascending

parcel. This suggests that convective plumes should tilt sys-

tematically to the west at 7.58 relative to the vertical. Westward

tilts occur on either side of the equator and are maximal at the

equator. But such a scaling ignores important aspects of con-

vection in the atmosphere. So, we introduced a poloidal model

of convection (manifest in the ‘‘DoNUT’’ model) to char-

acterize the entire convective circulation that links fast con-

vective processes with slow compensating decent.

To our poloidal idealization of convection, we applied the

Leray projection in order to diagnose the pressure field. This

allowed us to describe the complete Coriolis force acting on a

convective flow. We briefly described two forces imposed by

Earth’s rotation. One we called the Coriolis rotation term that

depends on the sine of latitude (and the familiar Coriolis

terms), and the other, we called Coriolis shear. The latter de-

rives from the NCT and results in tilting of convective ascent

and anomalous poleward flow to the west and equatorward

flow to the east.

To illustrate the impact of our simple mathematical argu-

ments, we added the NCT to RAMS and ran three groups of

simulations. The first was a small ensemble of congestus sim-

ulations. The impact of the NCT was to preferentially lift air

with positive zonal momentum and to shift updrafts westward.

The second was a set of restarted RCE simulations. There, we

showed that (in a statistical sense) convective velocities are

weakened and contiguous precipitating regions are widened

by the NCT. The third was of steady-state convection due

to a patch of high surface enthalpy flux. The NCT resulted

in a tilted overturning structure in the vertical plane and the

confluence-difluence couplet suggested by our DoNUT model

in the horizontal plane.

As a practical suggestion, we think it is reasonable to include

the NCT in cloud-resolving models. That is not to say it should

be used in all simulations just as the traditional terms are often

excluded intentionally in simulations. We would also suggest

that systematic tilts to convective storms, of the sort suggested

above, could be observable in vertically resolved cloud data

if suitably shear-free conditions can be found. Unfortunately,

current satellite instruments are locked in predominantly

north–south orbits, which would largely preclude their pro-

viding useful observation.

FIG. 6. The axisymmetrized composite of precipitation intensity

(blue and gold) and the axial accumulated precipitation (red).

Error bounds are the standard deviation of 60 samples in RCEoff

and 44 in RCEon.
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